A HEREDITARILY INDECOMPOSABLE ASYMPTOTIC $\ell_2$ BANACH SPACE

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hereditarily Indecomposable Asymptotic `2 Banach Space

A famous open problem in functional analysis is whether there exists a Banach space X such that every (bounded linear) operator on X has the form λ+K where λ is a scalar and K denotes a compact operator. This problem is usually called the “scalar-plus-compact” problem [14]. One of the reasons this problem has become so attractive is that by a result of N. Aronszajn and K.T. Smith [7], if a Bana...

متن کامل

Interpolating Hereditarily Indecomposable Banach Spaces

A Banach space X is said to be Hereditarily Indecomposable (H.I.) if for any pair of closed subspaces Y , Z of X with Y ∩ Z = {0}, Y + Z is not a closed subspace. (Throughout this section by the term “subspace” we mean a closed infinite-dimensional subspace of X .) The H.I. spaces form a new and, as we believe, fundamental class of Banach spaces. The celebrated example of a Banach space with no...

متن کامل

m at h . FA ] 3 1 Ja n 20 06 A HEREDITARILY INDECOMPOSABLE ASYMPTOTIC l 2 BANACH SPACE

A Hereditarily Indecomposable asymptotic ℓ 2 Banach space is constructed. The existence of such a space answers a question of B. Maurey and verifies a conjecture of W.T. Gowers.

متن کامل

Strictly Singular Non-compact Operators on Hereditarily Indecomposable Banach Spaces

An example is given of a strictly singular non-compact operator on a Hereditarily Indecomposable, reflexive, asymptotic `1 Banach space. The construction of this operator relies on the existence of transfinite c0-spreading models in the dual of the space.

متن کامل

HEREDITARILY INDECOMPOSABLE HAUSDORFF CONTINUA HAVE UNIQUE HYPERSPACES 2XAND Cn(X)

Let X be a Hausdorff continuum (a compact connected Hausdorff space). Let 2X (respectively, Cn(X)) denote the hyperspace of nonempty closed subsets of X (respectively, nonempty closed subsets of X with at most n components), with the Vietoris topology. We prove that if X is hereditarily indecomposable, Y is a Hausdorff continuum and 2X (respectively Cn(X)) is homeomorphic to 2Y (respectively, C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 2006

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089506003193